Login for faster access to the best deals. Click here if you don't have an account.

What is your welding torch power? Private

1 month ago Multimedia Sâmraông   13 views

$ --

  • img
Location: Sâmraông
Price: $ --

What is your welding torch power?

When choosing a mig welding torch for our equipment, one of the most important factors is the power of the gun, or what is the same, the maximum intensity of use that it can endure.

An often underestimated aspect of welding is the tig welding torch itself!

Unhandy, heavy torches, which are not ergonomically adapted to the work processes, make the daily work for welders more difficult. Often long seams have to be welded without stopping and the heavy hose assembly is dragged behind or has to be lifted into the correct position.

Or when welding is done in an overhead position. Every welder knows what we are talking about: The welding material drips, the muscles are aching, the back hurts and the weight of the welding torch including the hose assembly quickly becomes a burden.

The hose assembly in particular is an important factor when it comes to weight reduction. Lightweight hose assemblies can weigh 30-50% less than a regular hose assembly, which has a significant effect. Of course, you shouldn't skimp on the material inside, because the plasma welding torch still has to be just as powerful as before.

This paper aims to develop a novel tungsten inner gas (TIG) wp-26v tig torch in order to join thin sheets efficiently. Using a narrowing nozzle (constricted nozzle) inside a conventional TIG torch can critically improve the position accuracy of the tungsten electrode and also the arc plasma characteristics and heat input density. In order to evaluate the efficiency of this new torch, weld bead appearance and cross-section images were examined by an optical microscope, scanning electron microscope (SEM), and electron back scatter diffraction patterns (EBSD). The results showed that in all cases, the weld bead profile was stable without undercut and burn-through. Full penetration weld was seen. The width of weld bead on the bottom surface was increased much in comparison to conventional TIG welding. However, the results from SEM and EBSD images indicated that in the case of low welding current, the blowholes were found out on the side of the thinner material (SS400). The penetration of SUS430 material to SS400 material was not good. It seems that no fusion of SUS430 material to SS400 at the bottom surface can be seen. Meanwhile, no blowholes were seen in the case of high welding current. The penetration was better, and the fusion was reached on the bottom surface. 

This work is about the influence rule of inclination of gas cooled tig torch on the formation and characteristics of weld bead during the pulsed-gas metal arc welding (GMAW) process based on the robotic operation.