Login for faster access to the best deals. Click here if you don't have an account.

Research on the effect of yield strength of circular saw blade on roll tensioning process Private

3 days ago Automobiles Battambang   5 views

$ --

  • img
Location: Battambang
Price: $ --

In this paper, a 2-D and 3-D finite element model of roll tensioning process of woodworking saw blade were established by Static/General module of ABAQUS software based on finite element method. The rolling force and tensioning stress distribution of circular saw blade were calculated by these two models which were proved to be true and reliable. The effects of yield strength of circular saw blade on tensioning stress distribution and rolling force were studied. The research achievements showed that a circular saw blade made with high yield strength obtained a higher tangential compressive stress and radial compressive stress in the rolled region during roll tensioning process, which has both advantages and disadvantages for the stability of the saw blade. Besides, a circular saw blade made with high yield strength also put forward higher requirements for roll tensioning equipment because of the large rolling force during roll tensioning process.

Circular saw blade is an important tool and is widely used in wood industry. Its stability, cutting precision, and material-saving ability are the most important features, especially for wood processing industry because of the shortage of precious wood. The Chinese government strongly supports the improvement of timber utilization. Therefore, TCT saw blade for wood is becoming thinner and thinner currently for reducing kerf loss and improving the utilization of materials.

However, thermal stress is produced when circular saw blade is working, because the temperature at the edge of the blade is higher than that in other regions of the blade. It will cause high tangential compressive stress on the edge of the circular saw blade, causing a buckling deformation that reduces cutting precision, increases kerf loss, and shortens the saw’s life [1, 2]. Thin TCT saw blade for wood composite is more easily affected by thermal stress. For saving materials, the stability of saw blade is very important, especially for thin circular saw blade.

In step 1, the roll moved slowly down and elastic–plastic deformation was produced to the metal cutting saw blade. In step 2, the roll slowly raised and the saw blade was no longer under any load. The residual stress of saw blade was the tensioning stress.

The three-dimensional 8 node reduced integral element C3D8R was chosen for the rolling ring of circular saw blade for metal and the 4-node general-purpose reduced integral shell S4R was chosen for the medial and lateral regions, which can reduce the number of elements to the maximum extent and improve the computational efficiency. The three parts were tied together through the way of shell-to-solid coupling. The number of elements was increased within the contact area between the circular saw blade and the roll for improving the accuracy of calculation, as shown in Fig. 3. The other parameters of the 3-D FEM model were the same as the 2-D model.

Additional Details

Car Brand Aston Martin