Login for faster access to the best deals. Click here if you don't have an account.

MEK Inhibitor Mechanism of Action, Side Effects, and Uses Private

1 month ago Multimedia Sâmraông   15 views

$ --

  • img
Location: Sâmraông
Price: $ --

The MAPK pathway is more accurately termed the RAS-RAF-MEK-ERK pathway, and involves the regulation of cell proliferation and survival. It is constitutionally overactive in 30% of cancers. Two enzymes in this pathway, namely, BRAF and MEK, are target kinases which play crucial roles in the cell cycle.

The first therapies to target this pathway were BRAF inhibitors, but intrinsic and acquired tumor resistance quickly led to treatment failure by reactivation of the MAPK pathway. MEK inhibitors have emerged to partially overcome these resistance mechanisms and are now used in combination with BRAF inhibitors to extend the time to resistance.

Normally, ERK1/2 activation initiates a variety of cellular and nuclear pathways, while also inhibiting Raf activity by a feedback loop to modulate the activity of the MAPK pathway. MEK1/2 inhibition inactivates ERK1/2 and also removes the feedback inhibition on Raf.

Drugs which selectively inhibit the MEK enzymes are able to inhibit growth and to induce the death of cells in the presence of these mutations.

How Do Antineoplastic Egfr Inhibitors Work?

Antineoplastic epidermal growth factor receptor (EGFR) inhibitors are a class of drugs used to treat hormone receptor-positive breast cancer (breast cancer that depends on hormones such as estrogen to grow), medullary thyroid cancer, advanced head and neck cancer, metastatic colorectal cancer, non-small cell lung cancer, and pancreatic cancer.

EGFR inhibitors are anti-cancer medications that block the activity of a protein called EGFR. EGFR is found on the surface of some normal cells and is involved in cell growth, also found at high levels on some types of cancer cells, which causes these cells to grow and divide. Blocking EGFR helps in preventing unregulated cell division, thus preventing the growth, and spread of cancer cells.

Of the many proteins involved in cell cycle control, cyclin-dependent kinases (CDKs) are among the most important. CDKs are a family of multifunctional enzymes that can modify various protein substrates involved in cell cycle progression. Specifically, CDKs phosphorylate their substrates by transferring phosphate groups from ATP to specific stretches of amino acids in the substrates. Different types of eukaryotic cells contain different types and numbers of CDKs. For example, yeast have only a single CDK, whereas vertebrates have four different ones.

How Do CDKs Control the Cell Cycle?

All eukaryotes have multiple cyclins, each of which acts during a specific stage of the cell cycle. (In organisms with multiple CDKs, each CDK is paired with a specific cyclin.) All cyclins are named according to the stage at which they assemble with CDKs. Common classes of cyclins include G1-phase cyclins, G1/S-phase cyclins, S-phase cyclins, and M-phase cyclins. M-phase cyclins form M-CDK complexes and drive the cell's entry into mitosis; G1 cyclins form G1-CDK complexes and guide the cell's progress through the G1 phase; and so on.